Dans ce papier nous étudions une correspondance de Jacquet–Langlands locale pour toutes les représentations lisses irréductibles. La correspondance est caractérisée par le fait qu’elle respecte la correspondance de Jacquet–Langlands classique et commute avec le foncteur d’induction parabolique. Elle est compatible dans un sens à préciser au foncteur de Jacquet et à l’involution d’Aubert–Schneider–Stuhler. Nous utilisons cette correspondance pour montrer qu’une certaine classe de représentations d’une forme intérieure de $\mathrm{GL}_n$ sur un corps $p$-adique sont unitarisables. C’est le premier pas dans la preuve de la conjecture U1 de Tadić.
We study a local Jacquet–Langlands correspondence for all smooth irreducible representations. This correspondence is characterized by the fact that it respects the classical Jacquet–Langlands correspondence and it commutes with the parabolic induction functor. It has good behavior with respect to the Jacquet’s functor and the involution of Aubert–Schneider–Stuhler. Using this correspondence, we prove some particular cases of the global Jacquet–Langlands correspondence and we deduce that a certain class of representations of an inner form of $\mathrm{GL}_n$ over a $p$-adic field are unitarizable. This is the first step towards the proof of Conjecture U1 of Tadić.