We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Longitudinal studies of first episode of psychosis (FEP) patients are critical to understanding the dynamic clinical factors influencing functional outcomes; negative symptoms and verbal memory (VM) deficits are two such factors that remain a therapeutic challenge. This study uses white-gray matter contrast at the inner edge of the cortex, in addition to cortical thickness, to probe changes in microstructure and their relation with negative symptoms and possible intersections with verbal memory.
Methods
T1-weighted images and clinical data were collected longitudinally for patients (N = 88) over a two-year period. Cognitive data were also collected at baseline. Relationships between baseline VM (immediate/delayed recall) and rate of change in two negative symptom dimensions, amotivation and expressivity, were assessed at the behavioral level, as well as at the level of brain structure.
Results
VM, particularly immediate recall, was significantly and positively associated with a steeper rate of expressivity symptom decline (r = 0.32, q = 0.012). Significant interaction effects between baseline delayed recall and change in expressivity were uncovered in somatomotor regions bilaterally for both white-gray matter contrast and cortical thickness. Furthermore, interaction effects between immediate recall and change in expressivity on cortical thickness rates were uncovered across higher-order regions of the language processing network.
Conclusions
This study shows common neural correlates of language-related brain areas underlying expressivity and VM in FEP, suggesting deficits in these domains may be more linked to speech production rather than general cognitive capacity. Together, white-gray matter contrast and cortical thickness may optimally inform clinical investigations aiming to capture peri-cortical microstructural changes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.