We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that after inverting the Planck constant $h$, the Bezrukavnikov–Kaledin quantization $(X, {\mathcal {O}}_h)$ of symplectic variety $X$ in characteristic $p$ with $H^2(X, {\mathcal {O}}_X) =0$ is Morita equivalent to a certain central reduction of the algebra of differential operators on $X$.
We settle several fundamental questions about the theory of universal deformation quantization of Lie bialgebras by giving their complete classification up to homotopy equivalence. Moreover, we settle these questions in a greater generality: we give a complete classification of the associated universal formality maps. An important new technical ingredient introduced in this paper is a polydifferential endofunctor ${\mathcal {D}}$ in the category of augmented props with the property that for any representation of a prop ${\mathcal {P}}$ in a vector space $V$ the associated prop ${\mathcal {D}}{\mathcal {P}}$ admits an induced representation on the graded commutative algebra $\odot ^\bullet V$ given in terms of polydifferential operators. Applying this functor to the minimal resolution $\widehat {\mathcal {L}\textit{ieb}}_\infty$ of the genus completed prop $\widehat {\mathcal {L}\textit{ieb}}$ of Lie bialgebras we show that universal formality maps for quantizations of Lie bialgebras are in one-to-one correspondence with morphisms of dg props
satisfying certain boundary conditions, where $\mathcal {A}\textit{ssb}_\infty$ is a minimal resolution of the prop of associative bialgebras. We prove that the set of such formality morphisms is non-empty. The latter result is used in turn to give a short proof of the formality theorem for universal quantizations of arbitrary Lie bialgebras which says that for any Drinfeld associator $\mathfrak{A}$ there is an associated ${\mathcal {L}} ie_\infty$ quasi-isomorphism between the ${\mathcal {L}} ie_\infty$ algebras $\mathsf {Def}({\mathcal {A}} ss{\mathcal {B}}_\infty \rightarrow {\mathcal {E}} nd_{\odot ^\bullet V})$ and $\mathsf {Def}({\mathcal {L}} ie{\mathcal {B}}\rightarrow {\mathcal {E}} nd_V)$ controlling, respectively, deformations of the standard bialgebra structure in $\odot V$ and deformations of any given Lie bialgebra structure in $V$. We study the deformation complex of an arbitrary universal formality morphism $\mathsf {Def}(\mathcal {A}\textit{ssb}_\infty \stackrel {F}{\rightarrow } {\mathcal {D}}\widehat {\mathcal {L}\textit{ieb}}_\infty )$ and prove that it is quasi-isomorphic to the full (i.e. not necessary connected) version of the graph complex introduced Maxim Kontsevich in the context of the theory of deformation quantizations of Poisson manifolds. This result gives a complete classification of the set $\{F_\mathfrak{A}\}$ of gauge equivalence classes of universal Lie connected formality maps: it is a torsor over the Grothendieck–Teichmüller group $GRT=GRT_1\rtimes {\mathbb {K}}^*$ and can hence can be identified with the set $\{\mathfrak{A}\}$ of Drinfeld associators.
Gross, Hacking and Keel have constructed mirrors of log Calabi–Yau surfaces in terms of counts of rational curves. Using $q$-deformed scattering diagrams defined in terms of higher-genus log Gromov–Witten invariants, we construct deformation quantizations of these mirrors and we produce canonical bases of the corresponding non-commutative algebras of functions.
We prove a $\unicode[STIX]{x1D6E4}$-equivariant version of the algebraic index theorem, where $\unicode[STIX]{x1D6E4}$ is a discrete group of automorphisms of a formal deformation of a symplectic manifold. The particular cases of this result are the algebraic version of the transversal index theorem related to the theorem of A. Connes and H. Moscovici for hypo-elliptic operators and the index theorem for the extension of the algebra of pseudodifferential operators by a group of diffeomorphisms of the underlying manifold due to A. Savin, B. Sternin, E. Schrohe and D. Perrot.
We prove a version of Kontsevich’s formality theorem for two subspaces (branes) of a vector space X. The result implies, in particular, that the Kontsevich deformation quantizations of S(X*) and ∧(X) associated with a quadratic Poisson structure are Koszul dual. This answers an open question in Shoikhet’s recent paper on Koszul duality in deformation quantization.
The classical Fourier–Mukai duality establishes an equivalence of categories between the derived categories of sheaves on dual complex tori. In this article we show that this equivalence extends to an equivalence between two dual objects. Both of these are generalized deformations of the complex tori. In one case, a complex torus is deformed formally in a non-commutative direction specified by a holomorphic Poisson structure. In the other, the dual complex torus is deformed in a $B$-field direction to a formal gerbe. We show that these two deformations are Fourier–Mukai equivalent.
A symplectic fibration is a fibre bundle in the symplectic category (a bundle of symplectic fibres over a symplectic base with a symplectic structure group). We find the relation between the deformation quantization of the base and the fibre, and that of the total space. We consider Fedosov's construction of deformation quantization. We generalize the Fedosov construction to the quantization with values in a bundle of algebras. We find that the characteristic class of deformation of a symplectic fibration is the weak coupling form of Guillemin, Lerman, and Sternberg. We also prove that the classical moment map could be quantized if there exists an equivariant connection.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.