Let $w$ be either in the Muckenhoupt class of ${{A}_{2}}\left( {{\mathbb{R}}^{n}} \right)$ weights or in the class of $QC\left( {{\mathbb{R}}^{n}} \right)$ weights, and let ${{L}_{w}}\,:=\,-{{w}^{-1}}\,\text{div}\left( A\nabla \right)$ be the degenerate elliptic operator on the Euclidean space ${{\mathbb{R}}^{n}}$, $n\,\ge \,2$. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space $H_{{{L}_{w}}}^{p}\,\left( {{\mathbb{R}}^{n}} \right)$ associated with ${{L}_{w}}$ for $p\,\in \,(0,\,1]$, and when $p\,\in \,(\frac{n}{n+1},\,1]$ and $w\,\in \,{{A}_{{{q}_{0}}}}\left( {{\mathbb{R}}^{n}} \right)$ with ${{q}_{0}}\,\in \,[1,\,\frac{p(n+1)}{n})$, the authors prove that the associated Riesz transform $\nabla L_{w}^{-1/2}$ is bounded from $H_{{{L}_{w}}}^{p}\,\left( {{\mathbb{R}}^{n}} \right)$ to the weighted classical Hardy space $H_{w}^{p}\left( {{\mathbb{R}}^{n}} \right)$.