Dependence structures for bivariate extremal events are analyzed using particular types of copula. Weak convergence results for copulas along the lines of the Pickands-Balkema-de Haan theorem provide limiting dependence structures for bivariate tail events. A characterization of these limiting copulas is also provided by means of invariance properties. The results obtained are applied to the credit risk area, where, for intensity-based default models, stress scenario dependence structures for widely traded products such as credit default swap baskets or first-to-default contract types are proposed.