We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a generalisation for the notion of the centre of an algebra in the setup of algebras graded by an arbitrary abelian group $G$. Our generalisation, which we call the $G$-centre, is designed to control the endomorphism category of the grading shift functors. We show that the $G$-centre is preserved by gradable derived equivalences given by tilting modules. We also discuss links with existing notions in superalgebra theory.
We exhibit a Cremona transformation of $\mathbb{P}^{4}$ such that the base loci of the map and its inverse are birational to K3 surfaces. The two K3 surfaces are derived equivalent but not isomorphic to each other. As an application, we show that the difference of the two K3 surfaces annihilates the class of the affine line in the Grothendieck ring of varieties.
We introduce a new class of autoequivalences that act on the derived categories of certain vector bundles over Grassmannians. These autoequivalences arise from Grassmannian flops: they generalize Seidel–Thomas spherical twists, which can be seen as arising from standard flops. We first give a simple algebraic construction, which is well suited to explicit computations. We then give a geometric construction using spherical functors which we prove is equivalent.
We construct natural equivalences between derived categories of coherent sheaves on the local models for stratified Mukai and Atiyah flops (of type A).
In this paper we introduce a generalization of Picard groups to derived categories of algebras. First we study general properties of this group. Then we consider easy particular algebras such as commutative algebras, where we reduce to the classical case. Finally, we define and study a homomorphism of the braid group to the Picard group of the derived category of a Brauer tree algebra. In the smallest case we show that this homomorphism is injective and that its image is of finite index.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.