Glycine plays an essential role in a variety of biological and biochemical processes. As the smallest amino acid, glycine is especially important in studies of prebiotic chemistry and chemical evolution. The behaviour of glycine in aqueous solution under ionizing radiation fields is still not well understood. Understanding the reaction mechanism of glycine in an ionizing radiation environment may provide insights into the complex processes involved in prebiotic chemical synthesis. Such reaction conditions could provide clues about the environmental conditions that might favour the emergence of life. Numerical modelling based on reaction kinetics provides information on the feasibility of the reaction mechanisms. In this work, we developed a numerical model in Python that describes the behaviour of glycine, as prototype compound, in aqueous solution under gamma radiation. The model is based on a variety of reaction kinetics pathways that have been proposed to describe the principal reactions between glycine and the water radicals formed by ionizing radiation. The numerical results are consistent with the experiments of other researchers. We obtained similar numerical solutions from different reaction mechanisms that share the same initial reactions. The results suggest that the primary attack of water radicals on the glycine is the main factor that controls the general decay of the molar concentration of glycine and the secondary reactions do not have a strong influence, even at high doses of nearly 200 kGy. The numerical tests of the models indicate their stability with the changing initial condition of the molar concentration of glycine. This work contributes to the advancement of knowledge regarding the behaviour of glycine in aqueous solutions under ionizing radiation from a kinetic perspective. It also provides insights into their stability under conditions that are difficult to replicate in the laboratory. Finally, this work contributes to the evaluation of appropriate numerical methods for solving the system of stiff differential equations that describe the reaction mechanism of organic molecules under high radiation fields.