In this paper we derive several explicit results on one special sticky diffusion process which is constructed as a time-changed version of a diffusion with no sticky points. A theorem concerning the process-related Green operators defined on some nonnegative piecewise continuous functions is provided. Then, based on this theorem, we explore the distributional properties of the sticky diffusion. A financial application is presented where we compute the value of the European vanilla call option written on the underlying with sticky price dynamics.