We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objectives: Schizophrenia (SCZ) is a severe psychiatric disorder with a lifetime prevalence of approximately 1% in most of the populations studied. SCZ is multifactorial with the contribution of multiple susceptibility genes that could act in conjunction with epigenetic processes and environmental factors. There is some evidence supporting the association between genetic variants in dysbindin (DTNBP1) gene and SCZ in populations. In this study, we investigated the association between polymorphisms P1635 and P1655 in dysbindin gene with SCZ.
Methods: Totally, 115 unrelated patients with SCZ and 117 unrelated healthy volunteers were studied. Genomic DNA was extracted from blood. Genotyping was done with the PCR-RFLP method. The allele and genotype associations were analysed with X2 test. The Benjamini-Hochberg procedure was used to correct p values for multiple comparisons.
Results: The results showed no significant difference between patients and controls in allelic frequencies or genotypic distributions of SNP P1635 (p = 0.809), but a significant difference between the case and control groups for SNP P1655 (p = 0.009) was found. We could also find a significant positive association between A-C haplotype and SCZ (OR = 1.7, 95% CI 1.18–2.42; p = 0.004, pc = 0.02) and a protective effect for A-G haplotype (p = 0.003, OR = 0.57, 95% CI 1.18–2.42; p = 0.003, pc = 0.02).
Conclusion: This study may provide further support for the association between SNP polymorphisms in DTNBP1 and SCZ in the Iranian population. Studies with more markers and subjects for various populations will be necessary to understand the genetic contribution of the gene to the development of SCZ.
Glycine regulates glutamatergic neurotransmission, and several papers have reported the relationship between glycine and schizophrenia. The dysbindin-1 (DTNBP1: dystrobrevin-binding protein 1) gene is related to glutamatergic neurotransmission and has been found to be a strong candidate gene for schizophrenia. In this study, we clarified the relationship between dysbindin, glutamate, and glycine with in vivo microdialysis methods.
Methods
We measured extracellular glycine and glutamate levels in the striatum of sandy (sdy) mice using in vivo microdialysis methods. Sdy mice express no dysbindin protein owing to a deletion in the dysbindin-1 gene. In addition, we measured changes in those amino acids after methamphetamine (METH) administration.
Results
The basal levels of extracellular glycine and glutamate in the striatum of sdy mice were elevated. These extracellular glutamate levels decreased gradually after METH administration and were not subsequently different from those of wild-type mice.
Conclusions
These results suggest that dysbindin might modulate glycine and glutamate release in vivo.
Schizophrenia is a complex disorder with a high heritability. Family members have an increased risk not only for schizophrenia per se but also for schizophrenia spectrum disorders. Impairment of neuropsychological functions found in schizophrenia patients are also frequently observed in their relatives. The dystrobrevin-binding protein 1 (DTNBP1) gene located at chromosome 6p22.3 is one of the most often replicated vulnerability genes for schizophrenia. In addition, this gene has been shown to modulate general cognitive abilities both in healthy subjects and in patients with schizophrenia.
Method
In a sample of 521 healthy subjects we investigated an association between the DTNBP1 genotype [single nucleotide polymorphism (SNP) rs1018381], personality traits [using the NEO Five-Factor Inventory (NEO-FFI) and the Schizotypal Personality Questionnaire – Brief Version (SPQ-B)] and cognitive function (estimated IQ, verbal fluency, attention, working memory and executive function).
Results
Significantly lower scores on the SPQ-B (p=0.0005) and the Interpersonal Deficit subscale (p=0.0005) in carriers of the A-risk allele were detected. There were no differences in any of the cognitive variables between groups.
Conclusions
The results indicate that genetic variation of the DTNBP1 genotype might exert gene-specific modulating effects on schizophrenia endophenotypes at the population level.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.