Experiments were conducted at the Upper Coastal Plain Research Station near Rocky Mount and at the Peanut Belt Research Station near Lewiston-Woodville in 2002 and 2003. Peanut injury was minimal (< 5%) with all soil-applied programs. S-Metolachlor PRE alone or in mixture with sulfentrazone, diclosulam, or flumioxazin controlled annual grasses similarly (66 to 87%). The addition of imazapic plus 2,4-DB POST increased annual grass control (> 93%). Sulfentrazone or diclosulam in mixture with S-metolachlor were the best PRE options, with 94% and 92% control of yellow and purple nutsedge, respectively, with flumioxazin being least effective at 70%. Diclosulam and flumioxazin in mixture with S-metolachlor were the best PRE options, with 99% and 93%, respectively for common ragweed control, whereas sulfentrazone was the least effective at 65%. S-Metolachlor in mixture with sulfentrazone, diclosulam, or flumioxazin PRE were similar (87 to 90%) for common lambsquarters control. S-Metolachlor in mixture with sulfentrazone, diclosulam, or flumioxazin provided similar levels of entireleaf, ivyleaf, pitted, and tall morningglory control (87, 86, and 87%, respectively) and better than S-metolachlor alone at 64%. Flumioxazin in mixture with S-metolachlor was the best PRE option for control of Palmer amaranth at 96%, whereas diclosulam with S-metolachlor was the best PRE option for control of eclipta at 100%. The prepackaged mixture of acifluorfen and bentazon plus 2,4-DB POST and imazapic plus 2,4-DB POST were similar for all morningglory species (> 96%) and Palmer amaranth control (93 and 97%, respectively). Peanut treated with S-metolachlor plus diclosulam PRE numerically yielded the highest at 3,210 kg/ha, but were statistically equivalent to S-metolachlor plus flumioxazin PRE at 3,040 kg/ha. Peanut treated with imazapic plus 2,4-DB POST yielded the most at 3,400 kg/ha, while peanut treated with a prepackaged mixture of acifluorfen and bentazon plus 2,4-DB POST yielded less (3,070 kg/ha).