A class of four simultaneous component models for the exploratory analysis of multivariate time series collected from more than one subject simultaneously is discussed. In each of the models, the multivariate time series of each subject is decomposed into a few series of component scores and a loading matrix. The component scores series reveal the latent data structure in the course of time. The interpretation of the components is based on the loading matrix. The simultaneous component models model not only intraindividual variability, but interindividual variability as well. The four models can be ordered hierarchically from weakly to severely constrained, thus allowing for big to small interindividual differences in the model. The use of the models is illustrated by an empirical example.