We present a new technique developed to model the radiative transfer (RT) effects in nearby face-on galaxies. The face-on perspective provides insight into the star-forming regions and clumpy structure, imposing the need for high-resolution 3D models to recover the asymmetric stellar and dust geometries observed in galaxies. RT modeling of the continuum emission of stars and its interaction with the embedding dust in a galaxy's interstellar medium enables a self-consistent study of the main dust heating mechanisms in galaxies. The main advantage of RT calculations is the non-local character of dust heating that can be addressed by tracing the propagation of stellar radiation through the dusty galaxy medium.