We provide an algorithm to find the value and an optimal strategy of the Ten Thousand dice game solitaire variant in the framework of Markov control processes. Once an optimal critical threshold is found, the set of nonstopping states of the game becomes finite and the solution is found by a backwards algorithm that gives the values for each one of these states of the game. The algorithm is finite and exact. The strategy to find the critical threshold comes from the continuous pasting condition used in optimal stopping problems for continuous-time processes with jumps.