In this paper, different techniques for the generation of additional transmission zeros (TZs) in planar waveguide filters are investigated. In the classical theory, TZs are generated only by destructive interference of non-adjacent cavities, limiting the available number of TZs to the filter order itself. However, more approaches for the generation of TZs are known, including bypass-coupling in oversized cavities, frequency-dependent coupling apertures as well as dispersive/resonant TZs which can be realized by the direct source to load cross-coupling. The aim of this paper is to combine several of the strategies in one physical filter set-up to increase the maximal number of TZs beyond the filter order. Different Ku-band fourth-order filter set-ups are presented, showing in total between six and eight real as well as complex TZs. Three filters are manufactured as a proof of concept and compared with the simulation, showing very good agreement.