We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is a brief review of standard material on categories and functors, including limits and the Yoneda Lemmas. A reader who is familiar with this material can skip this section, yet we recommend looking at our notational conventions, which are spelled out in Conventions 1.2.4 and 1.2.5.
A category structure for ordered Bratteli diagrams is proposed in which isomorphism coincides with the notion of equivalence of Herman, Putnam, and Skau. It is shown that the natural one-to-one correspondence between the category of Cantor minimal systems and the category of simple properly ordered Bratteli diagrams is in fact an equivalence of categories. This gives a Bratteli–Vershik model for factor maps between Cantor minimal systems. We give a construction of factor maps between Cantor minimal systems in terms of suitable maps (called premorphisms) between the corresponding ordered Bratteli diagrams, and we show that every factor map between two Cantor minimal systems is obtained in this way. Moreover, solving a natural question, we are able to characterize Glasner and Weiss’s notion of weak orbit equivalence of Cantor minimal systems in terms of the corresponding C*-algebra crossed products.
We introduce the basic categorical language that will be used throughout this book. We define the concepts of monoidal and braided monoidal category and prove that any monoidal category is monoidally equivalent to a strict one.
Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure ${\cal S}$, there exists a countable field ${\cal F}$ of arbitrary characteristic with the same essential computable-model-theoretic properties as ${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.
A category structure for Bratteli diagrams is proposed and a functor from the category of $\text{AF}$ algebras to the category of Bratteli diagrams is constructed. Since isomorphism of Bratteli diagrams in this category coincides with Bratteli’s notion of equivalence, we obtain in particular a functorial formulation of Bratteli’s classification of $\text{AF}$ algebras (and at the same time, of Glimm’s classification of $\text{UHF}$ algebras). It is shown that the three approaches to classification of $\text{AF}$ algebras, namely, through Bratteli diagrams, $\text{K}$-theory, and a certain natural abstract classifying category, are essentially the same from a categorical point of view.
We investigate topological realizations of higher-rank graphs. We show that the fundamental group of a higher-rank graph coincides with the fundamental group of its topological realization. We also show that topological realization of higher-rank graphs is a functor and that for each higher-rank graph Λ, this functor determines a category equivalence between the category of coverings of Λ and the category of coverings of its topological realization. We discuss how topological realization relates to two standard constructions for k-graphs: projective limits and crossed products by finitely generated free abelian groups.
We study 2-representations of finitary 2-categories with involution and adjunctions by functors on module categories over finite-dimensional algebras. In particular, we define, construct and describe in detail (right) cell 2-representations inspired by Kazhdan–Lusztig cell modules for Hecke algebras. Under some natural assumptions we show that cell 2-representations are strongly simple and do not depend on the choice of a right cell inside a two-sided cell. This reproves and extends the uniqueness result on categorification of Kazhdan–Lusztig cell modules for Hecke algebras of type A from [V. Mazorchuk and C. Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), 1363–1426].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.