Ever since the pioneering work of Schmidt a half-century ago there has been great interest in finding an appropriate empirical relation that would directly link some property of interstellar gas with the process of star formation within it. Schmidt conjectured that this might take the form of a power-law relation between the rate of star formation (SFR) and the surface density of interstellar gas. However recent observations suggest that a linear scaling relation between the total SFR and the amount of dense gas within molecular clouds appears to be the underlying physical relation that most directly connects star formation with interstellar gas from scales of individual GMCs to those encompassing entire galaxies both near and far. Although Schmidt relations are found to exist within local GMCs, there is no Schmidt relation observed between GMCs. The implications of these results for interpreting and understanding the Kennicutt-Schmidt scaling law for galaxies are discussed.