We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The higher-order thalamus (e.g., the pulvinar) is widely thought to play a critical role in its interactions with the neocortex, but identifying precisely what that role is has been somewhat challenging.Here, we describe how a computational approach to understanding the nature of learning and memory in the neocortex suggests three distinct, well-defined contributions of the thalamus: (1) attention, which is perhaps the most widely discussed function of the pulvinar, is supported by a pooled inhibition dynamic involving the thalamic reticular nucleus; (2) predictive learning, where the pulvinar serves as a kind of screen on which predictions are projected, and a temporal difference between predictions and subsequent outcomes can drive error-driven learning throughout the thalamocortical system; and (3) executive function in the circuits involving the frontal cortex, where the mediodorsal (MD) thalamus is largely similar anatomically to the pulvinar and could thus support similar attentional and predictive learning functions, whereas ventral thalamic nuclei receive inhibitory modulation from the basal ganglia, supporting a gating function to regulate action based on a strong competition of Go versus No Go informed by reinforcement learning.Taken together, these important modulatory and learning contributions of the thalamus suggest that a full computational understanding of the neocortex is significantly incomplete without an integration of the thalamic circuitry.
Is phonological form perceived, understood, stored, and accessed in the same way and with the same neural mapping in signed and spoken languages? This is the complex and multifaceted question that the work on sign language processing has addressed since the beginning. The methodologies and technologies used to address this question have become more sophisticated over the last sixty years. Since the beginning, a psycholinguistic tradition was at the center of the work on sign languages, and we trace the trajectory of this work in this chapter.
Stereotactic body radiotherapy (SBRT) is widely used for the treatment of stage-I non-small cell lung cancer (NSCLC). Patient-specific motion correlated with 4DCT could be essential for hypofractionated SBRT. All patients undergoing SBRT do not require motion management during the dose delivery. The objective of this study was to evaluate which patient may benefit from Gated SBRT.
Materials and methods
Treatment planning of 20 patients of stage-I NSCLC was analysed. Conventional and 4DCT scans were taken. Internal target volume as well as planning target volume (ITV and PTV) were determined in the CT data sets. PTVall phases created using 4DCT data sets and PTV15mm created using conventional CT data were compared. Also, ITVall phases were compared with ITV created from maximum intensity projections (ITVMIP). Suitability of patients for motion management-based treatment delivery was also evaluated.
Results
The average ITVMIP to ITVall phases ratio is 1·06 indicating good agreement between them. Based on the ratio of intensity projections, 9 out of 17 patients were found suitable for our existing gated treatment.
Conclusion
4D CT is the main requirement in SBRT to identify the patients who can benefit from motion management during the dose delivery.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.