Let $R$ be a semiprime ring with center $Z\left( R \right)$. For $x,\,y\,\in \,R$, we denote by $\left[ x,\,y \right]\,=\,xy\,-\,yx$ the commutator of $x$ and $y$. If $\sigma $ is a non-identity automorphism of $R$ such that
1$$\left[ \left[ \cdot \cdot \cdot \,\left[ \left[ \sigma \left( {{x}^{n0}} \right),\,{{x}^{n1}} \right],\,{{x}^{n2}} \right],\cdot \cdot \cdot \right],\,{{x}^{nk}} \right]\,=\,0$$
for all $x\,\in \,R$, where ${{n}_{0}},\,{{n}_{1}},\,{{n}_{2}},\,...,\,{{n}_{k}}$ are fixed positive integers, then there exists a map $\mu \,:\,R\,\to \,Z\left( R \right)$ such that $\sigma \left( x \right)\,=\,x\,+\,\mu \left( x \right)$ for all $x\,\in \,R$. In particular, when $R$ is a prime ring, $R$ is commutative.