We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.
Methods
We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks.
Results
Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time.
Conclusions
Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
Cognitive impairment is a core feature of schizophrenia and has been observed in both familial (FHR) and clinical high-risk (CHR) samples. Nonetheless, there is a paucity of research directly contrasting cognitive profiles in these two high-risk states and first-episode schizophrenia. This study aimed to compare cognitive functions in patients with first-episode schizophrenia-spectrum disorder (FES), their unaffected siblings (FHR), CHR individuals and healthy controls.
Method
A standardized battery of cognitive assessments was administered to 69 FES patients, 71 help-seeking CHR individuals without family history of psychotic disorder, 50 FHR participants and 68 controls. FES and CHR participants were recruited from territory-wide early intervention service for psychosis in Hong Kong. CHR status was ascertained using Comprehensive Assessment of At-Risk Mental State.
Results
Among four groups, FES patients displayed the largest global cognitive impairment and had medium-to-large deficits across all cognitive tests relative to controls. CHR and FHR participants significantly underperformed in most cognitive tests than controls. Among various cognitive tests, digit symbol coding demonstrated the greatest magnitude of impairment in FES and CHR groups compared with controls. No significant difference between two high-risk groups was observed in global cognition and all individual cognitive tests except digit symbol coding which showed greater deficits in CHR than in FHR participants.
Conclusion
Clinical and familial risk groups experienced largely comparable cognitive impairment that was intermediate between FES and controls. Digit symbol coding may have the greatest discriminant capacity in distinguishing FES and CHR from healthy controls, and between two high-risk samples.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.