The effect of equal-channel angular pressing (ECAP) at various temperatures (310, 330, and 350 °C) on precipitations and strengthening mechanisms of Mg–9Al–1Si alloys was investigated. The results indicated that the average grain size decreased gradually with decreasing of ECAP temperature. The distribution of the Mg2Si phase changed a little when the ECAP temperature increased. However, the different morphologies of β-Mg17Al12 phase were observed, including continuous and uncontinuous precipitation of particles at 310 and 350 °C. The continuous β-Mg17Al12 phase was hardly found and the refined β-Mg17Al12 phase was distributed dispersedly in the matrix at 330 °C. Thus, the mechanical properties of the Mg–9Al–1Si alloy was optimum: ultimate tensile strength and elongation were ∼350.8 MPa and ∼14.77%, respectively. It can be deduced that both grain refinement strengthening and precipitation strengthening play significant roles in strength increment of the alloy during the ECAP process. However, precipitation strengthening is the predominant mechanism.