We study k-divisible partition structures, which are families of random set partitions whose block sizes are divisible by an integer k = 1, 2, …. In this setting, exchangeability corresponds to the usual invariance under relabeling by arbitrary permutations; however, for k > 1, the ordinary deletion maps on partitions no longer preserve divisibility, and so a random deletion procedure is needed to obtain a partition structure. We describe explicit Chinese restaurant-type seating rules for generating families of exchangeable k-divisible partitions that are consistent under random deletion. We further introduce the notion of Markovian partition structures, which are ensembles of exchangeable Markov chains on k-divisible partitions that are consistent under a random process of Markovian deletion. The Markov chains we study are reversible and refine the class of Markov chains introduced in Crane (2011).