We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The COVID-19 pandemic created barriers to healthcare that necessitated changes in services to meet needs of individuals. With these changes, technological advances in computerized cognitive testing became critical. As researchers and clinicians accelerated adaptation of computerized testing formats, considerations for development and interpretation of such tools have proved imperative. One such computerized tool, RC21X, utilizes performance measurement software comprising 15 modules to evaluate an individual’s processing speed, memory, executive functions, and neuromotor coordination. Although initial data has revealed strong psychometric properties (Saganis et al., 2020), a need to explore various attributes of this web-based tool has emerged. The current study examined impact of dominant handedness on an RC21X neuromotor task.
Participants and Methods:
The sample consisted of 602 participants: 553 (91.86%) were right-hand dominant and 49 (8.14%) were left-hand dominant. Of participants who identified their sex, 81.2% were male, 18.3% were female; 0.5% chose not to identify. Age ranged from 7-95 years (M = 41.21, SD = 18.81). This study focused on the RC21X Eye-Hand Coordination subtest. Using a Fitts’ Law paradigm, the module provided instruction for participants to alternately press the “A” and “L” keys on a keyboard as quickly and accurately as possible using only one upper extremity (UE) at a time (tested separately for right then left UE). We computed a one-way between groups multivariate analysis of variance (MANOVA) to investigate handedness differences on task performance. Dependent variables were individuals’ performances on right- and left-UE tasks; the independent variable was dominant handedness. We conducted preliminary assumption testing with no serious violations noted. We also separated the sample by dominant handedness to compare right versus left-hand performance using paired samples t-tests within each group. There were no significant differences between the two groups on either age or sex.
Results:
There was a statistically significant difference between right-hand dominant and left-hand dominant participants on the dependent variables, F (2, 599) = 8.84, p < .001, Wilks’ Lambda = .971. Mean scores indicated that right-hand dominant participants (M = 52.87, SD = 20.42) outperformed their left-hand dominant counterparts (M = 46.30, SD = 12.79) when using their right UE, though both groups performed similarly when using their left UE (right-hand dominant M = 48.55, SD = 17.81; left-hand dominant M = 49.70, SD = 14.13). These findings were present despite expected results from paired samples t-tests that revealed individuals performed best with their dominant hand.
Conclusions:
Results revealed that handedness is necessary to consider in design and utilization of computerized neuropsychological tests. The large proportion of right-hand dominant individuals may have affected our results; however, our sample is representative of handedness distribution in the general population. Although our paired samples t-tests support validity of RC21X, continued investigation of computerized performance measurement tools is necessary. Future research must explore the possibility of an ordering effect (i.e., right-handed participants starting with their dominant UE, but left-handed participants starting with their nondominant UE) or due to construction of everyday items (e.g., computer keyboards) primarily for right-hand dominant people.
In studies of singletons, a range of early-life characteristics have been reported to be associated with handedness, but some of these associations have failed to replicate. We examined associations between 23 early life characteristics with handedness in a large sample of 37,495 5-year-old twins. We considered three definitions of handedness: left-handedness (LH), mixed-handedness (MH), and non-right-handedness (NRH). Our main aim was to test whether the associations with sex, birth weight, gestational age, and season of birth — as reported in singletons — replicate in twins, and to examine twin-specific variables, including zygosity, chorionicity, birth order, and intertwin delivery time. Compared to previously published data from adults born as singletons (7.23%), the prevalence of NRH was higher in both twins (16.19%) and their parents (15.09%). In the twins, LH and NRH were associated with parents’ LH. Male sex and lower gestational age were associated with NRH, and LH was associated with not being breastfed. MH was related to neurodevelopmental delays and higher externalizing problems later in childhood. Other previously reported associations were not replicated, and no twin-specific characteristics were related to handedness. These results emphasize the importance of considering multiple definitions of handedness and indicate a small number of replicated associations across studies.
Test anxiety refers to maladaptive cognitive and physiological reactions that interfere with optimal performance. Self-regulatory models suggest test anxiety occurs when there is a perceived discrepancy between current functioning and mental representations of desired academic goals. Interestingly, prior investigations have demonstrated those with greater interhemispheric communication are better able to detect discrepancies between current functioning and preexisting mental representations. Thus, the current study was designed to investigate the relationship between test anxiety and handedness—a commonly used proxy variable for interhemispheric communication. Undergraduate and graduate students (N = 277, 85.20% female, 68.19% Caucasian, $ \overline{\chi} $age = 29.88) (SD = 9.53) completed the FRIEDBEN Test Anxiety Scale and Edinburgh Handedness Inventory – Short Form. A series of Mann–Whitney U tests were used to test for differences in the cognitive, physiological, and social components of test anxiety between mixed- and consistent-handers. The results indicated that mixed-handers had significantly higher levels of cognitive test anxiety than consistent-handers. We believe this information has important implications for our understanding of the role of discrepancy detection and interhemispheric communication in eliciting and maintaining test-anxious responses.
Lateral organs arranged in spiral phyllotaxy are separated by the golden angle, ≈137.5°, leading to chirality: either clockwise or counter-clockwise. In some species, leaves are asymmetric such that they are smaller and curved towards the side ascending the phyllotactic spiral. As such, these asymmetries lead to mirroring of leaf shapes in plants of opposite phyllotactic handedness. Previous reports had suggested that the pin-stripe calathea (Goeppertia ornata) may be exclusively of one phyllotactic direction, counter-clockwise, but had limited sampling to a single population. Here, we use a citizen science approach leveraging a social media poll, internet image searches, in-person verification at nurseries in four countries and digitally-curated, research-grade observations to demonstrate that calatheas (Goeppertia spp.) around the world are biased towards counter-clockwise phyllotaxy. The possibility that this bias is genetic and its implications for models of phyllotaxy that assume handedness is stochastically specified in equal proportions is discussed.
Chapter 2 sets out the conceptual tools used in the book for analysing selected inferences about Neanderthal language. Derived from The Windows Approach to language evolution, these tools include conditions on the soundness of inferences drawn about something from data about another thing. Such inferences are not necessarily sound. The chapter illustrates three fundamental soundness conditions, using them in an appraisal of a composite inference about the linguistic capacity of European Neanderthals drawn from data about scratches in a number of their anterior teeth. These conditions are: (a) An inferential step must be grounded in factual data; (b) An inferential step must be underpinned by a warrant; and (c) A conclusion must be pertinent, referring to clearly identified and correctly characterised entities. Depicted by arrows, the four steps of the scratched-teeth inference are the following: There are scratches in a number of anterior Neanderthal teeth → Neanderthals ate with the right hand → They were right-handed → They had left-lateralised brains → They had linguistic capacity. The chapter finds the third inferential step to be contentious, and the fourth to be unsound.
Chapter 5 continues to challenge the homogeneity of embodied metaphor by looking at the ways in which having a different kind of body can shape the way in which one uses embodied metaphor. The focus is not only on physical differences but also on how those physical differences are viewed by society. The main areas of focus in this chapter are body size and shape, handedness and gender.
Whether Geneva Conventions (GC) rights should apply to terrorists is a contentious question that has received little attention in public opinion research. Both personality and contextual factors may be important. We queried participants’ support for applying the GC to alleged terrorists, but first we measured participants’ authoritarianism and presented them with a scenario concerning an alleged terrorist. We manipulated whether (1) the scenario contained examples of GC rights and (2) the alleged terrorist’s religious affiliation was Muslim or non-Muslim. Support for applying the GC to alleged terrorists was high and unaffected by providing examples of GC provisions, but it was negatively related to authoritarianism. Support was reduced by priming with a Muslim terrorist, but only among participants exhibiting a behavioral marker for limited interhemispheric interaction — consistent-handedness. Consistent-handers in our sample expressed greater authoritarianism, suggesting that limited interhemispheric interaction promotes greater authoritarianism, which decreases support for applying the GC to alleged terrorists.
The distribution of schizophrenia within populations bears upon the genetic nature of the disorder. From the World Health Organization Ten-Country Study of incidence Jablensky et al concluded that: Schizophrenic illnesses are ubiquitous, appear with similar incidence in different cultures and have clinical features that are more remarkable by their similarity across cultures than by their difference.
The WHO study included populations in Japan, India and Europe that have been separated for tens of thousands of years. Moreover illnesses with essentially the same characteristics are commonplace in the Australian aboriginal population that separated from other human populations 50,000 years ago.
Pregnancy- and birth-related factors may have an effect on handedness. Compared with singletons, twins have a lower birth weight, shorter gestational age, and are at higher risk for birth complications. We tested whether the prevalence of left-handedness is higher among twins than singletons, and if so, whether that difference is fully explained by pregnancy and birth-related differences between twins and singletons. We analyzed Finnish population-based datasets; included were 8,786 twins and 5,892 singletons with information on birth weight (n = 12,381), Apgar scores (n = 11,129), and gestational age (n = 11,811). Two twin cohorts were involved: FinnTwin12 included twins born during 1983–1987, and FinnTwin16 included twins born during 1974–1979. We had two comparison groups of singletons: 4,101 individuals born during 1986–1988 and enrolled in the Helsinki Ultrasound Trial, and 1,791 individuals who were partners of FinnTwin16 twins. We used logistic regression models with writing hand as the outcome for comparison and evaluating effects of covariates. Left-handedness was more common in twins (9.67%) than in singletons (8.27%; p = .004). However, Apgar scores were associated with handedness, and after controlling for covariates, we found no difference in the prevalence of left-handedness between twins and singletons. Increased left-handedness among twins, often reported by others, was evident in our data, but only among our older twin cohorts, and that association disappeared after removing effects of perinatal covariates.
The life history of the mud shrimp Axianassa australis, a common and widespread burrower inhabiting coastal mangroves and mud flats, is poorly known. This contribution presents the first information about the population structure, reproductive biology and fecundity of A. australis, based on individuals collected from September 2011 to December 2012 on Casa Caiada Beach, located in a densely urbanized area in north-eastern Brazil, using a yabby pump. The sex ratio did not depart significantly from the expected 1:1 proportion. A significant trend of left-handedness of the major cheliped was observed in the population. Females reached a larger maximum cephalothorax length (CL) than males. The differential growth between CL and the propodus of the major cheliped showed negative allometric growth for females and positive allometric growth for males, suggesting a trade-off between somatic growth and reproductive effort. Females bearing uneyed orange embryos predominated during all months in which ovigerous females were collected. Mean fecundity was 2379 eggs, ranging from 5 (7.55 mm CL) to 8300 (14.19 mm CL) eggs per female. About 71% of the variation in the number of eggs carried per female was explained by CL. The mean egg size correlated negatively with fecundity, indicating that large females of A. australis produce more and larger eggs than smaller females.
A view that handedness is not a dichotomous, i.e. left–right, phenomenon is shared by majority of researchers. However, there are different opinions about the exact number of hand-preference categories and criteria that should be used for their classification.
Objectives:
This study examined hand-preference categories using the latent class analysis (LCA) and validated them against two external criteria (i.e. hand demonstration test and a series of arbitrary cut-off points).
Method:
The Edinburgh Handedness Inventory was applied to 354 individuals randomly selected from the general population, and the obtained data were analysed using the LatentGOLD software.
Results:
Three discrete hand-preference clusters were identified, i.e. left-, right- and mixed-handed category. Further subdivision of hand-preference clusters resulted in a non-parsimonious subcategorization of individuals. There was a good agreement between the LCA-based classification and classification based on hand-preference demonstration tests. The highest agreement between the LCA model and the different types of arbitrary classification criteria ranged between 0 ± 50 and 0 ± 70 of the laterality quotient.
Conclusions:
The study findings supported the view that handedness is not a bimodal phenomenon. However, definitions and subcategorizations of mixed-handedness using the cut-off points that are outside of the recommended range may lead to misclassification of cases. It is hoped that the categorization and validation of handedness developed in the context of this study will make future research in this area less dependent on arbitrary values and criteria.
Objective – To assess competing explanations for the universal preference of mothers to cradle infants on their left side and to propose a relation to hemispheric asymmetry for social attachment and communication behaviour. Methods – A review of observational, experimental, physiological, psychological, neuro-physiological, and neuro-psychological studies, including new findings on the cradling behaviour of mothers with auditory or visual impairments. Results – A significant left-cradling bias is observed in both right- and left-handed mothers which cannot adequately be explained by arguments based on handedness or closer contact to the soothing sound of the maternal heartbeat. Observations of primate behaviour have led to the suggestion that the left-cradling bias may be related to a left visual field (right hemisphere) advantage for monitoring an infant's facial expressions of distress. However, more than just monitoring, cradling subserves the mother's connection with the infant. For that reason, we have suggested that left cradling might be related to a right hemisphere specialisation for emotional communication, i.e. the speech melody, smiles, signals, and stroking which mothers use to interact with their infants. Studies of mother-infant interaction show that the sound of the mother's voice is more soothing when cradling on the left, more stimulating when cradling on the right. Cradling laterality may thus be related to emotional state and behavioural intent. There is also evidence to suggest that left cradling is linked to a special role of the right hemisphere in social attachment behaviour. This function may be disturbed in mothers with postnatal depression who show abnormal right hemisphere activity. Conclusion – Cradling embodies the symbiotic relationship between mother and infant; various lines of evidence support the suggestion that the universal preference of mothers to cradle infants on their left side is related to a right hemisphere dominance for social attachment and communication behaviour.
A strong tendency toward left hemisphere (LH) language dominance has been well established, as evidenced by the high prevalence of language impairment following sudden onset lesions in the LH. In the presence of progressive LH pathology, such as epilepsy, substantial deviations in language organization can occur. However, the question regarding whether reorganization involves both expressive and receptive language functions or only the one directly affected by the primary location of pathology has not been settled. Using Wada testing scores from 296 epilepsy patients and estimated rates of typical dominance in the normal population, we assessed the frequency with which left frontal and temporal pathology resulted in reorganization of only the expressive or receptive language function or both. The comparisons revealed: (1) a significantly higher prevalence of atypical organization (i.e., deviations from LH dominance) among the LH patients compared to normal population estimates and right hemisphere patients, and (2) that regardless of pathology location within the LH, the rates of atypical reorganization for both expressive and receptive language were essentially equal. These results constitute evidence that the two language functions are intimately yoked and that when disruption to the system results in reorganization, it usually yields functional changes throughout the system. (JINS, 2010, 17, 000–000)
This paper focuses on the inheritance of human handedness and cerebral lateralization within the more general context of structural biological asymmetries. The morphogenesis of asymmetrical structures, such as the heart in vertebrates, depends upon a complex interaction between information coded in the cytoplasm and in the genes, but the polarity of asymmetry seems to depend on the cytoplasmic rather than the genetic code. Indeed it is extremely difficult to find clear-cut examples in which the direction of an asymmetry is under genetic control. As one possible case, there is some evidence that the direction, clockwise or counterclockwise, of rotation of the abdomen in certain mutant strains of Drosophila is controlled by a particular gene locus, although there appears to be some degree of confusion on this point. By contrast, it is much easier to find examples in which the degree but not the direction of asymmetry is under genetic control. For instance, there is a mutant strain of mice in which half of the animals display situs inversus of the viscera. The proportion has remained at one half despite many years of inbreeding, suggesting that the mutant allele effectively cancels the normal situs and allows the asymmetry to be specified in random fashion.
Although this account does not deny that the right hemisphere of humans may be the more specialized for certain functions, it does attribute a leading or dominant role to the left hemisphere (at least in most individuals). We suggest that so-called “right-hemisphere” functions are essentially acquired by default, due to the left hemisphere's prior involvement with speech and skilled motor acts; we note, for instance, that these right-hemisphere functions include rather elementary perceptual processes. But perhaps the more critical prediction from our account is that the phenomenon of equipotentiality should be unidirectional: the right (lagging) hemisphere should be more disposed to take over left-hemisphere functions following early lesions than is the left (leading) hemisphere to take over right-hemisphere functions. We note preliminary evidence that this may be so.
In this paper, we consider human handedness and cerebral lateralization in a general biological context, and attempt to arrive at some conclusions common to the growth of human laterality and of other structural asymmetries. We suggest that many asymmetries appear to be under the influence of a left-right maturational gradient, which often seems to favor earlier or more rapid development on the left than on the right. If the leading side is damaged or restricted, this gradient may be reversed so that growth occurs with the opposite polarity. A mechanism of this sort appears to underlie the phenomenon of situs inversus viscerum et cordis, and the same principle may help explain the equipotentiality of the two sides of the human brain with respect to the representation of language in the early years of life. However we must also suppose that the leading side normally exerts an inhibitory influence on the lagging side, for otherwise one would expect language ultimately to develop in both halves of the brain. Examples of an inhibitory influence of this kind can also be found in other biological asymmetries; for instance, in the crab Alpheus heterochelis, one claw is normally greatly enlarged relative to the other, but if the larger claw is removed the smaller one is apparently released from its inhibitory influence and grows larger.
This last example is particularly interesting because it suggests a mechanism comparable to that proposed by Annett to account for the distribution of handedness in the human population. She argued, in effect, that there is a “right shift” factor among the majority of the population, but that among a minority who lack this factor handedness is determined at random. If it is supposed that cerebral lateralization is also determined at random among this recessive minority, the model can be extended to provide a reasonable fit to the data on the correlation between handedness and cerebral lateralization. However this genetic model (or any other) still fails to account for the near-binomial distribution of handedness among twins and among nontwin siblings. We suggest that right-handedness and leftcerebral dominance for language are manifestations of an underlying gradient which is probably coded in the cytoplasm rather than in the genes. We must leave open the question as to whether departures from this pattern are due to a recessive gene which effectively cancels the asymmetry to environmental influences, or to both genetic and cytoplasmic factors.
The semantic fluency task is a widely used assessment tool for evaluating memory-related cognitive deficits in neurological and neuropsychiatric disorders. The present study investigates individual differences in performance on this task in a normal population. The aim is to explore handedness differences in switching and clustering tendencies when performing this task. Consistent with our prediction, when asked to produce as many animal names as possible in 1 min, mixed handers demonstrated greater switching between different subcategories of animals than strong handers. These findings are interpreted in terms of the more diffuse spread of activation among conceptual representations in the right hemisphere, and greater access to right hemisphere processes in mixed handers. The findings have implications for the research communities using the semantic fluency task, irrespective of whether or not they are looking at handedness differences per se. (JINS, 2009, 15, 1023–1027.)
The present study describes the reproductive biology, population structure and life history traits of the abundant intertidal crab Xantho poressa. Between March 2007 and April 2008, a total of 1918 individuals were collected in Corrales de Rota (south-western Spain), a human-modified intertidal habitat characterized by an artificial high complexity. Suitable refuges for crabs (cobbles and boulders) are very abundant in this area and density (maximum of 50 ind*m−2) was directly related with the area covered by these stones. In spring and summer, size–frequency distributions showed a polymodal pattern with seasonal variations related to the incorporation of juveniles to the adult population. Newly settled juveniles were not found in the Corrales suggesting an ontogenetic migration from a distant recruitment habitat. The annual reproductive cycle was seasonal and successive peaks in the abundance of ovigerous females were observed in late spring and summer. Females probably produced multiple broods during a long intermoult period. The gonadosomatic index had a cyclic pattern of variation with peaks two weeks prior to those of ovigerous females; it was lower during the non-reproductive season. The hepatosomatic index was high during spring, decreased during summer and increased gradually at the end of the reproductive season. There was a monthly cycle of larval release resulting from a combination of a cyclic and synchronic ovarian maturity, oviposition and incubation; hatching took place during neap tides when the moon was at last quarter. The adaptive significance of the rhythmic reproduction and hatching observed may not be explained by the predator avoidance hypotheses. The overall sex-ratio did not differ from 1:1 but one male and several females coexist under a stone, indicating a female biased operative sex-ratio. The combination of a complex habitat, its use, and a strong sexual dimorphism suggest a refuge–defence polygenic mating system. The survival and fitness of X. poressa in the Corrales de Rota are probably enhanced by the availability of shelter, a consequence of a highly complex habitat, and probably, of human activity.
This chapter discusses several twin-specific factors that could affect handedness in twins and thereby decrease concordance rates in twins. The classical method to determine the genetic contribution to a trait is to compare concordance for that trait between monozygotic (identical) and dizygotic (fraternal) twins. The chapter also discusses which implications the model of inheritance for handedness has on concordance rates in twins. It investigates the effect of special twin factors, such as perinatal trauma and mirror-imaging on concordance rates in twins. Understanding the role of these factors in twins will help to interpret the results of twins studies and may resolve part of the controversy about genetic aspects of handedness and language lateralization. An explanation for the low concordance for handedness and lateralization in twin pairs could be the presence of a non-genetic factor that affects twins more than singletons.
Neurologically normal people tend to collide with objects on the right side more frequently than with objects located on the left side of space. This phenomenon could be attributable to pseudoneglect wherein individuals selectively attend to the left field. The current study investigated this effect using a virtual route-following task that was presented centrally, in the lower field, and in the upper field. Handedness was also examined. Fifty-two participants (four left handed) completed this task, and when presented in the lower field, more left-side collisions emerged. In the upper condition, this bias reversed direction to the expected rightward bias. In the central condition, there was no significant directional bias in collision behavior. An interaction between handedness and presentation condition indicated that left-handed participants experienced more right-side collisions in the central condition. Collectively, these results suggest that directional biases (i.e., left vs. right) in collision behavior are modulated by both location in the visual field (central, upper, or lower) and handedness. (JINS, 2009, 15, 225–230.)
Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agenesis of the rostrum and/or splenium, and a smaller number (n = 20) showed hypoplasia (thinning) of all CC regions (rostrum, genu, body, and splenium). The expected right ear advantage (REA) was exhibited by normal controls and children with SBM having a normal or hypoplastic splenium. It was not shown by children with SBM who were left handed, missing a splenium, or had a higher level spinal cord lesion. Perhaps the right hemisphere of these children is more involved in processing some aspects of linguistic stimuli. (JINS, 2008, 14, 771–781.)