We prove that a germ of a one-dimensional holomorphic foliation with a generic singularity in dimension two or three that exhibits a Lie group transverse structure in the complement of some codimension one analytic subset is logarithmic, that is, given by a system of closed meromorphic one-forms with simple poles. In the global context, we prove that a foliation by curves in a three-dimensional complex manifold with generic singularities and a Lie group transverse structure off a codimension one analytic subset is logarithmic; that is, it is given by a system of closed meromorphic one-forms with simple poles.