In this study, the effects of Sm on the microstructure and corrosion resistance of hot-extruded AZ61 magnesium alloys were investigated by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that uniformly dispersed Al2Sm particles with size of ∼2 μm were discovered in the hot-extruded AZ61 magnesium alloy sample modified with 1.0 wt% Sm, which promoted dynamic recrystallization grain growth during the hot-extruded process, gradually increasing the grain of the alloy as Sm content increased. The morphology of the corroded surface and the corrosion rate of the hot-extruded AZ61 magnesium alloy both were significantly improved after Sm addition. The alloy sample modified with 2.0 wt% Sm after immersion in 3.5 wt% NaCl solution for 12 h showed minimum corrosion rate value, 3.1 mg/cm2 day, which is only 3.7% of the corrosion rate of unmodified alloy (82 mg/cm2 day).