We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ${{Q}_{p}}$ spaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to the $Q_{p}^{\#}$ classes of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we prove the nesting property (inclusion relations) of $Q_{p}^{\#}$ classes on hyperbolic Riemann surfaces. The same property for ${{Q}_{p}}$ spaces was also established systematically and precisely in earlier work by the authors of this paper.
We introduce and study some new function spaces on Riemann surfaces. For certain parameter values these spaces coincide with the classical Dirichlet space, $\text{BMOA}$, or the recently defined ${{\text{Q}}_{p}}$ space. We establish inclusion relations that generalize earlier known inclusions between the above-mentioned spaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.