We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article we introduce and study hyperclass-forcing (where the conditions of the forcing notion are themselves classes) in the context of an extension of Morse-Kelley class theory, called MK**. We define this forcing by using a symmetry between MK** models and models of ZFC− plus there exists a strongly inaccessible cardinal (called SetMK**). We develop a coding between β-models ${\cal M}$ of MK** and transitive models M+ of SetMK** which will allow us to go from ${\cal M}$ to M+ and vice versa. So instead of forcing with a hyperclass in MK** we can force over the corresponding SetMK** model with a class of conditions. For class-forcing to work in the context of ZFC− we show that the SetMK** model M+ can be forced to look like LK*[X], where κ* is the height of M+, κ strongly inaccessible in M+ and $X \subseteq \kappa$. Over such a model we can apply definable class forcing and we arrive at an extension of M+ from which we can go back to the corresponding β-model of MK**, which will in turn be an extension of the original ${\cal M}$. Our main result combines hyperclass forcing with coding methods of [3] and [4] to show that every β-model of MK** can be extended to a minimal such model of MK** with the same ordinals. A simpler version of the proof also provides a new and analogous minimality result for models of second-order arithmetic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.