An operator $T$ on a Banach space $X$ is said to be weakly supercyclic (respectively $N$-supercyclic) if there exists a one-dimensional (respectively $N$-dimensional) subspace of $X$ whose orbit under $T$ is weakly dense (respectively norm dense) in $X$. We show that a weakly supercyclic hyponormal operator is necessarily a multiple of a unitary operator, and we give an example of a weakly supercyclic unitary operator. On the other hand, we show that hyponormal operators are never $N$-supercyclic. Finally, we characterize $N$-supercyclic weighted shifts.