In this paper we introduce a notation system for the infinitary derivations occurring in the ordinal analysis of KP + Π3-Reflection due to Michael Rathjen. This allows a finitary ordinal analysis of KP + Π3-Reflection. The method used is an extension of techniques developed by Wilfried Buchholz, namely operator controlled notation systems for RS∞-derivations. Similarly to Buchholz we obtain a characterisation of the provably recursive functions of KP + Π3-Reflection as <-recursive functions where < is the ordering on Rathjen's ordinal notation system . Further we show a conservation result for -sentences.