We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The treatment planning system (TPS) plays a key role in radiotherapy treatments; it is responsible for the accurate determination of the monitor unit (MU) needed to be delivered to treat a patient with cancer. The main goal of radiotherapy is to sterilise the tumour; however, any imprecise dose delivered could lead to deadly consequences. The TPS has a quality assurance tool, an independent program to double check the MU, evaluate patient plan correctness and search for any potential error.
Materials and methods
In this work, a comparison was carried out between a MU calculated by TPS and an independent in-house-developed monitor unit calculation program (MUCP). The program, written in Cplusplus (C++ Object-Oriented), requires a database of several measured quantities and uses a recently developed physically based method for field equivalence calculation. The ROOT CERN data analysis library has been used to establish fit functions, to extend MUCP use to a variety of photon beams. This study presents a new approach to checking MU correctness calculated by the TPS for a water-like tissue equivalent medium, using our MUCP, as the majority of previous studies on the MU independent checks were based on the Clarkson method. To evaluate each irradiated region, four calculation points corresponding to relative depths under the water phantom were tested for several symmetric, asymmetric, irregular symmetric and asymmetric field cases. A comparison of MU for each radiation fields from readings of the TPS and the MUCP was undertaken.
Results
A satisfactory agreement has been obtained and within the required standards (3%). Additional experimental measurements of dose deposited in a water phantom showed a deviation of <1·6%.
Findings
The MUCP is a useful tool for basic and complex MU verification for 3D conformal radiation therapy plans.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.