Laser polishing is a finishing process based on melting material, with the objective of improving surface topography. Some operating parameters must be taken into consideration, such as laser power, feed rate, offset, and overlap. Moreover, because of its dependence on the primary process, the initial topography has also an impact on the final result. This study describes a quadratic model, conceived to optimize final topography according to the primary process and laser polishing. Based on an experimental matrix, the model takes into account both laser operating parameters and the initial topography, in order to predict polished surfaces and to determine an optimal set of parameters. Furthermore, uncertainties linked to the measuring device need to be taken into consideration, as well as the process variability, in order to facilitate the interpretation of the results. After the phase of experimentation and the creation of the quadratic model, an optimal final topography is introduced, taking into account the initial surface and the laser parameters. Finally, in order to reduce the time process, it is important to study the impact of laser polishing strategy on the surface roughness.