We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sequential decisions from sampling are common in daily life: we often explore alternatives sequentially, decide when to stop such exploration process, and use the experience acquired during sampling to make a choice for what is expected to be the best option. In decisions from experience, theories of sampling and experiential choice are unable to explain the decision of when to stop the sequential exploration of alternatives. In this chapter, we propose a mechanism to inductively generate stopping decisions, and we demonstrate its plausibility in a large and diverse human data set of the binary choice sampling paradigm. Our proposed stopping mechanism relies on the choice process of a theory of experiential choice, Instance-Based Learning Theory (IBLT). The new stopping mechanism tracks the relative prediction errors of the two options during sampling, and stops when such difference is close to zero. Our results from simulation are able to accurately predict human stopping decisions distributions in the dataset. This model provides an integrated theoretical account of decisions from experience, where the stopping decisions are generated inductively from the sampling process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.