We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Every Thurston map $f\colon S^2\rightarrow S^2$ on a $2$-sphere $S^2$ induces a pull-back operation on Jordan curves $\alpha \subset S^2\smallsetminus {P_f}$, where ${P_f}$ is the postcritical set of f. Here the isotopy class $[f^{-1}(\alpha )]$ (relative to ${P_f}$) only depends on the isotopy class $[\alpha ]$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the map f can be seen as a fixed point of the pull-back operation. We show that if a Thurston map f with a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying $2$-sphere and construct a new Thurston map $\widehat f$ for which this obstruction is eliminated. We prove that no other obstruction arises and so $\widehat f$ is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem.
This lecture concludes our survey of closed holomorphic curves with a discussion, in the first section, of local intersection numbers, positivity of intersections and the adjunction formula for closed holomorphic curves, and then, in the second section, with an explanation of how these figure into the proof of McDuff’s theorem on symplectic ruled surfaces. The last two sections then begin a shift in focus toward punctured holomorphic curves: this discussion starts with a general introduction to contact manifolds and their symplectic fillings and then continues by defining the moduli space of punctured asymptotically cylindrical holomorphic curves in a completed symplectic cobordism between contact manifolds.
We study cluster categories arising from marked surfaces (with punctures and non-empty boundaries). By constructing skewed-gentle algebras, we show that there is a bijection between tagged curves and string objects. Applications include interpreting dimensions of $\operatorname{Ext}^{1}$ as intersection numbers of tagged curves and Auslander–Reiten translation as tagged rotation. An important consequence is that the cluster(-tilting) exchange graphs of such cluster categories are connected.
We consider an embedded modular curve in a locally symmetric space M attached to an orthogonal group of signature (p, 2) and associate to it a nonholomorphic elliptic modular form by integrating a certain theta function over the modular curve. We compute the Fourier expansion and identify the generating series of the (suitably defined) intersection numbers of the Heegner divisors in M with the modular curve as the holomorphic part of the modular form. This recovers and generalizes parts of work of Hirzebruch and Zagier.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.