Three classes of polytomous IRT models are distinguished. These classes are the adjacent category models, the cumulative probability models, and the continuation ratio models. So far, the latter class has received relatively little attention. The class of continuation ratio models includes logistic models, such as the sequential model (Tutz, 1990), and nonlogistic models, such as the acceleration model (Samejima, 1995) and the nonparametric sequential model (Hemker, 1996). Four measurement properties are discussed. These are monotone likelihood ratio of the total score, stochastic ordering of the latent trait by the total score, stochastic ordering of the total score by the latent trait, and invariant item ordering. These properties have been investigated previously for the adjacent category models and the cumulative probability models, and for the continuation ratio models this is done here. It is shown that stochastic ordering of the total score by the latent trait is implied by all continuation ratio models, while monotone likelihood ratio of the total score and stochastic ordering on the latent trait by the total score are not implied by any of the continuation ratio models. Only the sequential rating scale model implies the property of invariant item ordering. Also, we present a Venn-diagram showing the relationships between all known polytomous IRT models from all three classes.