We relate Thurstonian models for paired comparisons data to Thurstonian models for ranking data, which assign zero probabilities to all intransitive patterns. We also propose an intermediate model for paired comparisons data that assigns nonzero probabilities to all transitive patterns and to some but not all intransitive patterns.
There is a close correspondence between the multidimensional normal ogive model employed in educational testing and Thurstone's model for paired comparisons data under multiple judgment sampling with minimal identification restrictions. Alike the normal ogive model, Thurstonian models have two formulations, a factor analytic and an IRT formulation. We use the factor analytic formulation to estimate this model from the first and second order marginals of the contingency table using estimators proposed by Muthén. We also propose a statistic to assess the fit of these models to the first and second order marginals of the contingency table. This is important, as a model may reproduce well the estimated thresholds and tetrachoric correlations, yet fail to reproduce the marginals of the contingency table if the assumption of multivariate normality is incorrect.
A simulation study is performed to investigate the performance of three alternative limited information estimators which differ in the procedure used in their final stage: unweighted least squares (ULS), diagonally weighted least squares (DWLS), and full weighted least squares (WLS). Both the ULS and DWLS show a good performance with medium size problems and small samples, with a slight better performance of the ULS estimator.