Interacting particle systems (IPSs) are a very important class of dynamical systems, arising in different domains like biology, physics, sociology and engineering. In many applications, these systems can be very large, making their simulation and control, as well as related numerical tasks, very challenging. Kernel methods, a powerful tool in machine learning, offer promising approaches for analyzing and managing IPS. This paper provides a comprehensive study of applying kernel methods to IPS, including the development of numerical schemes and the exploration of mean-field limits. We present novel applications and numerical experiments demonstrating the effectiveness of kernel methods for surrogate modelling and state-dependent feature learning in IPS. Our findings highlight the potential of these methods for advancing the study and control of large-scale IPS.