We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Intrauterine undernutrition could impact offspring left ventricle (LV) afterload and arterial function. The changes observed in adulthood could differ depending on the arterial type, pathway and properties studied. Aim: To analyze whether undernutrition during early and mid-gestation is associated with changes in cardiovascular properties in adulthood.
Methods:
Pregnant ewes were assigned to one of the two treatment groups: (1) standard nutritional offer (high pasture-allowance, HPA; n = 16) or (2) nutritional restriction (50–75% of control intake) from before conception until day 122 of gestation (≈85% term) (low pasture allowance, LPA; n = 17). When offspring reached adult life, cardiovascular parameters were assessed in conscious animals (applanation tonometry, vascular echography).
Measurements:
Peripheral and aortic pressure, carotid and femoral arteries diameters, intima-media thickness and stiffness, blood flow, local and regional resistances and LV afterload were measured. Blood samples were collected. Parameters were compared before and after adjustment for nutritional characteristics at birth and at the time of the cardiovascular evaluation.
Results:
Doppler-derived cerebral vascular resistances, mean pressure/flow ratio (carotid resistance) and afterload indexes were higher in descendants from LPA than in descendants from HPA ewes (p < 0.05). Descendants from LPA had lower femoral diameters (p < 0.05). Cardiovascular changes associated with nutritional restriction during pregnancy did not depend on the offsprings’ nutritional conditions at birth and/or in adult life.
Conclusion:
Pregnant ewes that experienced undernutrition gave birth to female offspring that exhibited increased carotid pathway resistances (cerebral microcirculatory resistances) and LV afterload when they reached the age of 2.5 years. There were differences in the impact of nutritional deficiency on elastic and muscular arteries.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.