We investigate whether a benchmark and non-constant risk aversion affect the probability density distribution of optimal wealth at retirement. We maximize the expected utility of the ratio of pension wealth at retirement to an inflation-indexed benchmark. Together with a threshold and a lower bound, we are able to generate closed-form solutions. We find that this non-constant risk aversion type of utility could shift the probability density distribution of optimal wealth more towards the benchmark, and that the probability of achieving a certain percentage of the desired benchmark could be increased. The probability density distribution generated under constant relative risk aversion (CRRA) risk preference is more widely spread along the benchmark.