In this paper, we present two DCAL-like (Desired Compensation Adaptation Law) controllers for link position tracking of n-link, rigid, revolute robot manipulators. First, we use a simplified stability analysis to illustrate global asymptotic link position-velocity tracking for a DCAL-like controller with nonlinear feedback. The proof is simplified by employing a different structure for the nonlinear feedback than that originally proposed and by making use of the nonlinear damping control design tool. We then use the nonlinear damping tool to show that a DCAL-like controller with linear feedback can guarantee semi-global asymptotic link position-velocity tracking. The proposed nonlinear and linear feedback DCAL-like controllers are experimetally tested and compared using the Integrated Motion Inc. 2-link direct drive robot manipulator.