This paper deals with the following problem. Given a finite extension of fields $\mathbb{L}/\mathbb{K}$ and denoting the trace map from $\mathbb{L}$ to $\mathbb{K}$ by $\text{Tr}$, for which elements $z$ in $\mathbb{L}$, and $a$, $b$ in $\mathbb{K}$, is it possible to write $z$ as a product $xy$, where $x,y\in \mathbb{L}$ with $\text{Tr}(x)=a,\text{Tr}(y)=b$? We solve most of these problems for finite fields, with a complete solution when the degree of the extension is at least 5. We also have results for arbitrary fields and extensions of degrees 2, 3 or 4. We then apply our results to the study of perfect nonlinear functions, semifields, irreducible polynomials with prescribed coefficients, and a problem from finite geometry concerning the existence of certain disjoint linear sets.