We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A framework with sets of attacking arguments ($\textit{SETAF}$) is an extension of the well-known Dung’s Abstract Argumentation Frameworks ($\mathit{AAF}$s) that allows joint attacks on arguments. In this paper, we provide a translation from Normal Logic Programs ($\textit{NLP}$s) to $\textit{SETAF}$s and vice versa, from $\textit{SETAF}$s to $\textit{NLP}$s. We show that there is pairwise equivalence between their semantics, including the equivalence between $L$-stable and semi-stable semantics. Furthermore, for a class of $\textit{NLP}$s called Redundancy-Free Atomic Logic Programs ($\textit{RFALP}$s), there is also a structural equivalence as these back-and-forth translations are each other’s inverse. Then, we show that $\textit{RFALP}$s are as expressive as $\textit{NLP}$s by transforming any $\textit{NLP}$ into an equivalent $\textit{RFALP}$ through a series of program transformations already known in the literature. We also show that these program transformations are confluent, meaning that every $\textit{NLP}$ will be transformed into a unique $\textit{RFALP}$. The results presented in this paper enhance our understanding that $\textit{NLP}$s and $\textit{SETAF}$s are essentially the same formalism.
Characterizations of semi-stable and stage extensions in terms of two-valued logical models are presented. To this end, the so-called GL-supported and GL-stage models are defined. These two classes of logical models are logic programming counterparts of the notion of range which is an established concept in argumentation semantics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.