Data for Policy (dataforpolicy.org), a trans-disciplinary community of research and practice, has emerged around the application and evaluation of data technologies and analytics for policy and governance. Research in this area has involved cross-sector collaborations, but the areas of emphasis have previously been unclear. Within the Data for Policy framework of six focus areas, this report offers a landscape review of Focus Area 2: Technologies and Analytics. Taking stock of recent advancements and challenges can help shape research priorities for this community. We highlight four commonly used technologies for prediction and inference that leverage datasets from the digital environment: machine learning (ML) and artificial intelligence systems, the internet-of-things, digital twins, and distributed ledger systems. We review innovations in research evaluation and discuss future directions for policy decision-making.