We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter focuses on machine learning as a general way of thinking about the world, and provides a high-level characterization of the major goals of machine learning. Structural inference is the basis of many, and arguably most, machine learning frameworks and methods, including many well-known ones such as various forms of regression, neural-network learning algorithms such as back propagation, and causal learning algorithms using Bayesian networks. Machine learning algorithms must balance three factors: complexity of the learned model, which provides increased accuracy in representing the input dataset; generalizability of the learned model to new data, which enables the use of the model in novel contexts; and computational tractability of learning and using the model, which is a necessary precondition for the algorithms to have practical value. The practice of machine learning inevitably involves some human element to specify and control the algorithm, test various assumptions, and interpret the algorithm output.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.