We show that the moduli spaces of stable sheaves on projective schemes admit certain non-commutative structures, which we call quasi-NC structures, generalizing Kapranov’s NC structures. The completion of our quasi-NC structure at a closed point of the moduli space gives a pro-representable hull of the non-commutative deformation functor of the corresponding sheaf developed by Laudal, Eriksen, Segal and Efimov–Lunts–Orlov. We also show that the framed stable moduli spaces of sheaves have canonical NC structures.