We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to map the maturity of precision oncology as an example of a Learning Health System by understanding the current state of practice, tools and informatics, and barriers and facilitators of maturity.
Methods:
We conducted semi-structured interviews with 34 professionals (e.g., clinicians, pathologists, and program managers) involved in Molecular Tumor Boards (MTBs). Interviewees were recruited through outreach at 3 large academic medical centers (AMCs) (n = 16) and a Next Generation Sequencing (NGS) company (n = 18). Interviewees were asked about their roles and relationships with MTBs, processes and tools used, and institutional practices. The interviews were then coded and analyzed to understand the variation in maturity across the evolving field of precision oncology.
Results:
The findings provide insight into the present level of maturity in the precision oncology field, including the state of tooling and informatics within the same domain, the effects of the critical environment on overall maturity, and prospective approaches to enhance maturity of the field. We found that maturity is relatively low, but continuing to evolve, across these dimensions due to the resource-intensive and complex sociotechnical infrastructure required to advance maturity of the field and to fully close learning loops.
Conclusion:
Our findings advance the field by defining and contextualizing the current state of maturity and potential future strategies for advancing precision oncology, providing a framework to examine how learning health systems mature, and furthering the development of maturity models with new evidence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.