This paper surveys a new perspective on tree automata and Monadic second-order logic (MSO) on infinite trees. We show that the operations on tree automata used in the translations of MSO-formulae to automata underlying Rabin’s Tree Theorem (the decidability of MSO) correspond to the connectives of Intuitionistic Multiplicative Exponential Linear Logic (IMELL). Namely, we equip a variant of usual alternating tree automata (that we call uniform tree automata) with a fibered monoidal-closed structure which in particular handles a linear complementation of alternating automata. Moreover, this monoidal structure is actually Cartesian on non-deterministic automata, and an adaptation of a usual construction for the simulation of alternating automata by non-deterministic ones satisfies the deduction rules of the !(–) exponential modality of IMELL. (But this operation is unfortunately not a functor because it does not preserve composition.) Our model of IMLL consists in categories of games which are based on usual categories of two-player linear sequential games called simple games, and which generalize usual acceptance games of tree automata. This model provides a realizability semantics, along the lines of Curry–Howard proofs-as-programs correspondence, of a linear constructive deduction system for tree automata. This realizability semantics, which can be summarized with the slogan “automata as objects, strategies as morphisms,” satisfies an expected property of witness extraction from proofs of existential statements. Moreover, it makes it possible to combine realizers produced as interpretations of proofs with strategies witnessing (non-)emptiness of tree automata.