We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The first chapter describes the main structure of the book, but also reveals an algorithm that the book is built on. The ultimate goal is the creation of a strategy that can be used for modelling fluid flows laden with particles. Therefore, this chapter depicts the main steps: first, modelling the flow with a single particle, then introducing two particles that may interact, and finally, modelling of the whole set of particles. The details are provided in the subsequent chapters.
Multiphase flow is an area of fluid dynamics that describes interactions between two or more phases of matter and is relevant across a wide range of industrial processes and natural environmental systems, from the transport of natural resources to volcanic ash flow. This book covers the topic in detail, providing clear explanations of the underlying physics behind the complex behaviour of solid particles in fluids. The forces involved in particle-fluid interactions are first used to describe the interactions between the particles, and the fundamentals of contact mechanics are then outlined and applied to model interparticle collisions. The book is illustrated with frequent worked examples and algorithms, enabling the reader to develop the required tools for simulating the flow of fluids with solid particles. This self-contained text will appeal to physicists, applied mathematicians and mechanical engineers working in this important area of research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.