We derive a new compound Poisson distribution with explicit parameters to approximate the number of overlapping occurrences of any set of words in a Markovian sequence. Using the Chen-Stein method, we provide a bound for the approximation error. This error converges to 0 under the rare event condition, even for overlapping families, which improves previous results. As a consequence, we also propose Poisson approximations for the declumped count and the number of competing renewals.