A new model of confirmatory factor analysis (CFA) for multitrait-multimethod (MTMM) data sets is presented. It is shown that this model can be defined by only three assumptions in the framework of classical psychometric test theory (CTT). All other properties of the model, particularly the uncorrelatedness of the trait with the method factors are logical consequences of the definition of the model. In the model proposed there are as many trait factors as different traits considered, but the number of method factors is one fewer than the number of methods included in an MTMM study. The covariance structure implied by this model is derived, and it is shown that this model is identified even under conditions under which other CFA-MTMM models are not. The model is illustrated by two empirical applications. Furthermore, its advantages and limitations are discussed with respect to previously developed CFA models for MTMM data.