We give a revised and updated exposition of the theory of full dualities initiated by Clark, Davey, Krauss and Werner, introducing the (stronger) notion of a strong duality. All known full dualities turn out to be strong. A series of theorems which provide necessary and sufficient conditions for a strong duality to exist is proved. All full dualities in the literature can be obtained from these results and many new strong dualities can be derived. In particular, we show that within congruence distributive varieties every duality can be upgraded to a strong duality. Amongst the new strong dualities are the dualities of Davey, Priestley and Werner for the varieties of pseudocomplemented distributive lattices which are either strong as they stand or can easily be made strong by the addition of partial operations to the dual structures.