We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Pneumothorax remains an important cause of preventable trauma death. The aim of this systematic review is to synthesize the recent evidence on the efficacy, patient outcomes, and adverse events of different chest decompression approaches relevant to the out-of-hospital setting.
Methods:
A comprehensive literature search was performed using five databases (from January 1, 2014 through June 15, 2020). To be considered eligible, studies required to report original data on decompression of suspected or proven traumatic pneumothorax and be considered relevant to the prehospital context. They also required to be conducted mostly on an adult population (expected more than ≥80% of the population ≥16 years old) of patients. Needle chest decompression (NCD), finger thoracostomy (FT), and tube thoracostomy were considered. No meta-analysis was performed. Level of evidence was assigned using the Harbour and Miller system.
Results:
A total of 1,420 citations were obtained by the search strategy, of which 20 studies were included. Overall, the level of evidence was low. Eleven studies reported on the efficacy and patient outcomes following chest decompression. The most studied technique was NCD (n = 7), followed by FT (n = 5). Definitions of a successful chest decompression were heterogeneous. Subjective improvement following NCD ranged between 18% and 86% (n = 6). Successful FT was reported for between 9.7% and 32.0% of interventions following a traumatic cardiac arrest. Adverse events were infrequently reported. Nine studies presented only on anatomical measures with predicted failure and success. The mean anterior chest wall thickness (CWT) was larger than the lateral CWT in all studies except one. The predicted success rate of NCD ranged between 90% and 100% when using needle >7cm (n = 7) both for the lateral and anterior approaches. The reported risk of iatrogenic injuries was higher for the lateral approach, mostly on the left side because of the proximity with the heart.
Conclusions:
Based on observational studies with a low level of evidence, prehospital NCD should be performed using a needle >7cm length with either a lateral or anterior approach. While FT is an interesting diagnostic and therapeutic approach, evidence on the success rates and complications is limited. High-quality studies are required to determine the optimal chest decompression approach applicable in the out-of-hospital setting.
Cricothyrotomy and chest needle decompression (NDC) have a high failure and complication rate. This article sought to determine whether paramedics can correctly identify the anatomical landmarks for cricothyrotomy and chest NDC.
Methods:
A prospective study using human models was performed. Paramedics were partnered and requested to identify the location for cricothyrotomy and chest NDC (both mid-clavicular and anterior axillary sites) on each other. A board-certified or board-eligible emergency medicine physician timed the process and confirmed location accuracy. All data were collected de-identified. Descriptive analysis was performed on continuous data; chi-square was used for categorical data.
Results:
A total of 69 participants were recruited, with one excluded for incomplete data. The paramedics had a range of six to 38 (median 14) years of experience. There were 28 medical training officers (MTOs) and 41 field paramedics. Cricothyroidotomy location was correctly identified in 56 of 68 participants with a time to identification range of 2.0 to 38.2 (median 8.6) seconds. Chest NDC (mid-clavicular) location was correctly identified in 54 of 68 participants with a time to identification range of 3.4 to 25.0 (median 9.5) seconds. Chest NDC (anterior axillary) location was correctly identified in 43 of 68 participants with a time to identification range of 1.9 to 37.9 (median 9.6) seconds. Chi-square (2-tail) showed no difference between MTO and field paramedic in cricothyroidotomy site (P = .62), mid-clavicular chest NDC site (P = .21), or anterior axillary chest NDC site (P = .11). There was no difference in time to identification for any procedure between MTO and field paramedic.
Conclusion:
Both MTOs and field paramedics were quick in identifying correct placement of cricothyroidotomy and chest NDC location sites. While time to identification was clinically acceptable, there was also a significant proportion that did not identify the correct landmarks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.